1+1/(1+2)+1/(1+2+3)+……+(1/1+2+3+……+2013)
您好!
通项公式,第n个加式可以表述成:
1/(1 + 2 + 3 + ... + n)
= 1/[n(n + 1)/2]
= 2/[n(n + 1)]
= 2[1/n - 1/(n + 1)]
那么代入:
1/1 + 1/(1 + 2) + 1/(1 + 2 + 3) + .... + 1/(1 + 2 + 3 + ... + 100)
= 1 + 2/(2*3) + 2/(3*4) + .... + 2/(100*101)
= 1 + 2*(1/2 - 1/3) + 2*(1/3 - 1/4) + ... + 2*(1/100 - 1/101)










